[image: image1.png]

[image: image1.png] Peter Faulks Teacher Resources Web Site

[image: image2.png]

Worksheet
[image: image3.png]

Items highlighted in yellow are tasks for you to complete
Items in Blue italics are help tips

Year 10
Programming Principles

Programming

The students are introduced to structured and object oriented programming principles. Software and languages used may include Visual Basic, Python, HTML and JavaScript. This subject is rigorous in its approach and is more suited to students who plan to study Information Systems in Years 11 and 12 or for those students that are truly interested in the process involved to program a computer.

Computer Programming - A Little History

The first research computers of the late 1940s (like ENIAC) were programmed by hard wiring. Cables were plugged and unplugged into huge patch boards to physically alter the electrical circuitry. To program the machine you had to be a highly trained expert in both mathematics and engineering.

Later the "stored program" concept was introduced. The machines were programmed in binary (machine code) with punched holes in paper tape. This was easier than hard wiring, but with all the ones and zeroes to deal with, only experts could handle the programming.

Further down the track, came machine languages with symbolic type instructions (assembly codes), which could be converted by a computer program (an assembler) into machine code for the processor to process.

Both Machine Code and Assembler are known as low-level languages.

Below is a small example assembly code program

CPU
6802
; 6802 processor

HOF
MOT
; Motorola Records

ORG
0100H
; Start of Data

Source:
DFB
'Hello and Welcome'

Length:
EQU
$ - Source
;Length of Source

Destin:
DFS
Length
 ; Buffer which has same

; length as Source

ORG
0120H
; Start of Code

Entry:
LDX
 #Source
 ; Point Index Reg to Source String

LDAB
#Length

Loop:
LDAA
0,X

STAA
Length X

INX

DECB

BNE
Loop

As the third generation of computers were developed, more English-like languages such as Fortran [Formula Translation] were created. These were developed for scientists and people with only a small amount of computer programming experience.

Third generation computers were still hard to use so this lead to the design of 3rd generation languages such as Pascal and C+.

Pascal itself was developed as a special language for teaching computer programming. When a Pascal program is written and run it is dealt with by a computer program called a compiler. This program converts the high level code into machine code in one whole chunk. The compiled program can then be understood and executed by the processor.

BASIC [Beginners All Purpose Instruction Code] is another 3rd generation programming language written specially to make it easy to write computer programs. It rapidly became popular with hobbyists and people with very little training.

When a "BASIC program" is written and run, it is dealt with by a different computer program called an interpreter. This program converts and executes the high level code, one line at a time.

BASIC and PASCAL are therefore high level or 3rd generation languages while machine language is 1st generation and assembly language 2nd. BASIC and PASCAL are also considered "procedural" languages. This means that they follow the instructions in a linear, module-by-module manner.

 Eventually the "structured programming" movement introduced special "object oriented" versions of these languages, making coding easier and helping with debugging. It was really just a change in emphasis; code was arranged more logically with the objects it referred to.

Finally with the GUI (Graphical User Interface) systems, Xerox-Sparc, Macintosh and later Windows, came Event Based Programming. In these operating systems the user (not the programmer as in text-based BASIC and Pascal) chooses what happens, in what order, and when, by using the objects on the screen.

The operating system detects an "event" and does the appropriate things.

Visual Basic (VB) is an example of an event-driven programming environment. The programmer uses VB to design the user interface, that is the objects the user sees on screen, and writes code to determines what happens when an event like clicking takes place.

Visual Basic had its origin in the BASIC language.

When the Windows operating system was developed, a version of Visual Basic was created to program for these new systems. In versions up to 4.0, programs ran slower than fully compiled C or C++ programs. Thus early versions of VB had a speed disadvantage.

However, the programs were created interactively within a windowed development environment, and so they had the advantage of ease of development.

In the latest version of VB (VB 6.0) programs can be compiled into native code, so Visual Basic no longer suffers as much from problems with execution speed.

Overview:

Visual Basic is organized around objects. Each object has attributes (properties) and methods (modifications which can done with it). In VB these are called forms and controls which can then be combined to create a program. The important principle of software reuse is an integral part of VB. Programs can be written to run on the various Windows operating systems seen today, as well as in some types of World Wide Web browser applications.

VB is widely used by individuals and software developers to implement many different types of programs.

Programs written with Visual Basic are primarily event-driven. That is, once a form, or window, initialises, it waits for some event to occur which will cause it to execute a segment of code.

Event Oriented Programming

In third generation languages, traditional programming made a request to the user to enter data when the program asked for it. In other words the entry sequence of a data was fixed by the programmer and the user was forced to comply.

Event driven programming is a response to particular events such as mouse clicks or keystrokes. Such actions occur in an unpredictable manner determined by the user. With languages such as C++ and Pascal, the programmer has to make arrangements to trap these events in the main loop of the program, and then deal with them by various subprograms.

In Visual Basic the event trapping and subprogram calling is done by the VB runtime system, and all you have to do is write the code (or "procedure") to deal with the event. Event procedures are named by an object name (the name property of the object on the form) joined by an underscore to the user caused event (like Click). Eg. CmdExit_Click.
In this unit of study you will explore thinking, problem solving and the technology process by using programming and various hardware applications. This unit will include:

· The terminology of computing

· Teamwork and leadership

· Putting a computer together

· Visual Basic programming

· Python programming

Use of other software and media including scanners and digital cameras
RESOURCES AND EQUIPMENT
Student Texts: Programming with Visual Basic Second Edition (Summers)

(Class set available , if required).

Software: Visual Basic v5, HTML Kit v1, Netscape Navigator, Inspiration v5, Office applications

Regardless of which programming language that you use, effective computer programming involves following a number of key principles. The following is a list of 10 important programming principles. Although there are many more than ten, these are a good starting point:

Successful computer program development requires a structured (methodical) approach.

This is sometimes called the Program Development Cycle.

1. The solution to a programming problem should be planned in plain English or Pseudocode first to enable an uninhibited flow of ideas.

2. There are only three program control structures needed to solve computer-based problems. These are the - SEQUENCE control structure, the REPETITION control structure and the DECISION control structure. To be considered a true programming language the language must provide commands for these three structures.

3. Incorrect command sequence is the most common type of program error or BUG. Always check that your instructions are in the correct order by using a TRACE TABLE.

4. Repeated sets of instructions should be converted to REPETITION structures. (eg. Repeat-Until, While-Do, For-Next)

5. Always use meaningful Identifier-names (eg. NumberOfRolls). This will be very helpful when tracing errors.

6. Where possible break large programs up into smaller MODULES of code that perform one discrete task. (eg CalcCost).

7. A successful program is one works properly under a wide range of working conditions, proven with a comprehensive set of Test Data.

8. An efficient program is one that uses the computers resources including RAM, hard disk space, processing time effectively. Always be on the lookout for procedures that waste these valuable resources.

9. Make sure identifiers have been assigned the correct data type. This helps with the efficient use of memory.

During the Year we will undertake several tasks these include

Tasks Term One

Task 1

Report on Terminology

Task 2

Create a poster Lost Pet

Task 3

Investigation of Computer Components.

Describe the following computing components and what they are used for (Monitor, Keyboard, Modem, Mouse, printer, scanner)

[image: image4.png]

�

�

